If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+2=)^2-(2x+1)(4-3x)
We move all terms to the left:
(x+2-()^2-(2x+1)(4-3x))=0
We add all the numbers together, and all the variables
(x+2-()^2-(2x+1)(-3x+4))=0
We multiply parentheses ..
(x+2-()^2-(-6x^2+8x-3x+4))=0
We calculate terms in parentheses: +(x+2-()^2-(-6x^2+8x-3x+4)), so:We get rid of parentheses
x+2-()^2-(-6x^2+8x-3x+4)
determiningTheFunctionDomain -(-6x^2+8x-3x+4)+x+2-()^2
We add all the numbers together, and all the variables
-(-6x^2+8x-3x+4)+x
We get rid of parentheses
6x^2-8x+3x+x-4
We add all the numbers together, and all the variables
6x^2-4x-4
Back to the equation:
+(6x^2-4x-4)
6x^2-4x-4=0
a = 6; b = -4; c = -4;
Δ = b2-4ac
Δ = -42-4·6·(-4)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{7}}{2*6}=\frac{4-4\sqrt{7}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{7}}{2*6}=\frac{4+4\sqrt{7}}{12} $
| 3(2x−5)+9=4(x+7) | | (y-5)^2+6=46 | | 2(40+h)=110 | | 35x^2+2x-48=0 | | 4(y-3)-2y=-2 | | -4s=0 | | 4a-5=2a+1 | | 3y+26=-4(y+4) | | 5x=3-1/2 | | 1x1=5×2 | | 2(3^2x-3)=5^x | | 14x-10=6+6x | | -10-4n=n+5 | | −13b=9 | | 2(3^2x-3)=5^x | | -5x-7x=14-4x-6x | | 7/5v-3/5=-5/5-1/2 | | 5x=31/2 | | 2x(6-x=) | | -10+2p=4p+10 | | 3(n-1)=5n=3-2n | | 5t=5+6t | | /−2(4−2x)+3x=2x+2(5+x)−6 | | 7/5v-3/5=-v-1/2 | | -8h=-8–10h | | -5x-9=-3-3x | | 15x=9•10 | | x-32+1=2x-6 | | 3/4a+7=a-1 | | a=8.34*7.5*1800 | | 1+8a+7=-16+5a | | -7–4u=-5u |